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Abstract

A basic theory is presented for determining the solution existence of frequency optimization problems for truss
structures. This theory says that the natural frequencies remain unchanged when a truss is modi®ed uniformly and
that the natural frequency constraint is usually the key constraint in determining the solution existence of a truss
dynamic optimization problem. Based on this theory, a practical method is presented, in which only the ®rst order

derivatives of certain eigenvalues with respect to design variables are used to determine whether or not a speci®c
natural frequency constraint is achievable. If there is a solution for a given frequency constraint, a solution existence
result can be obtained very quickly using the method. Otherwise, the extreme value of the corresponding natural

frequency or a small con®ned range of design variables which contains the extreme value can be obtained.
Numerical examples are presented to illustrate the feasibility and e�ciency of the proposed method. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The topic of structural optimization, subjected to static constraints such as stresses (Shanley, 1952;
Schmit, 1960; Razani, 1965), displacements (Berke, 1970; Venkayya et al., 1973) and local stability
(Khot et al., 1973, 1976), dynamic constraints such as natural frequencies (Turner, 1967; Zarghamee,
1968; Khot, 1985), frequency responses or other dynamic responses (Icerman, 1969; Johnson, 1974;
Sadek, 1996), has been widely explored by many researchers. The common objective of the research is to
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construct algorithms to accomplish an optimal design, under the assumption that the solution of a given
structural optimization problem exists. This assumption holds true for structural optimization with static
constraints, unbounded continuously changing design variables, ®xed topology con®guration and
material properties.

A structural optimization problem considering dynamic properties such as natural frequencies and
dynamic responses may be termed a structural dynamic optimization problem (SDOP). SDOPs of some
spring-mass systems and simple distributed mass systems have closed solutions (Wang, 1991). For the
distributed mass systems, however, the solution existence for a given SDOP is often questionable. In
fact, we come across now and then some SDOPs, which do not have a solution. For a practical
SDOP, the optimal process is usually very computationally expensive. As the solution may not even
exist, a meaningful solution may not be found after the intensive computation. Therefore, it is
desirable to determine in advance whether there is a solution for a given SDOP.

The solution existence for a given SDOP is generally very di�cult to determine. It depends on many
parameters, such as topology, con®guration, material, design variable linking, lower and upper bounds
of design variables, discrete or continuous design variables, static and/or dynamic constraints, external
loads, etc. In this work, we only consider SDOPs for truss structures with ®xed topology, con®guration
and material properties. The sectional areas of the bars are chosen as design variables which can change
continuously, and the design variable linking is de®ned at the beginning. The natural frequencies of the
structure are chosen as constraints. A simple two-bar truss is ®rst investigated, and a basic theory is
then presented. A method based on this theory is proposed to examine more complex truss structures.

2. A simple example

Consider a two-bar planar truss, shown in Fig. 1. The material elastic modulus and density are 2.1 �
1011 Pa and 7.8� 103 kg/m3 for each bar. An optimization problem, demanding that the ®rst eigenvalue
be greater than 6.64 � 104 sÿ2, the second eigenvalue less than 5.35 � 105 sÿ2 or greater than 8.42 � 105

sÿ2 is ®rst examined. It can be proven that this problem does not hold a solution.
The eigenvalue-equation of the structure based on the ®nite element method can be written as:

Fig. 1. A two-bar planar truss.
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where A1 and A2 are the sectional-areas of bar 1 and bar 2, respectively, li is the ith eigenvalue and {fi}
is the corresponding eigenvector. Let l 'i=li/10

4 then the above equation can be rewritten as
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For given A2, Eq. (2) becomes a quadratic equation of A1. For A1 to have a real solution, it is required
that

�24:336l 02i ÿ 1:679� 103l 0i � 1:985� 104�2 ÿ 4� �9:734l 02i ÿ 8:190� 102l 0i � � �15:210l
02
i

ÿ 8:190� 102l 0i �r0: �3�

Thus we obtain

l1R6:639� 104, l2r5:358� 105: �4�
Therefore, it is impossible to have the ®rst eigenvalue greater than 6.64 � 104 sÿ2 and the second
eigenvalue less than 5.35� 105 sÿ2.

To examine other extreme values for the ®rst and second eigenvalues, Eq. (2) is rewritten as

al
02
i � bl 0i � c � 0 �5�

where

a � 9:734A2
1 � 24:336A2A1 � 15:21A2

2
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2�

c � 1:985� 104A2A1 �6�
We obtain the relationships between the two eigenvalues and the sectional areas of the bars:

l1 � bÿ
������������������
b2 ÿ 4ac
p

2a
� 104, l2 � b�

������������������
b2 ÿ 4ac
p

2a
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It is found from Fig. 2 that the ®rst eigenvalue becomes in®nitely small when the section area of bar 2 is
much larger than that of bar 1. Thus, the ®rst eigenvalue of the two-bar truss does not hold a non-zero
positive value as a minimum. When the sectional area of bar 2 is much less than that of bar 1, the
second eigenvalue approaches a maximum, shown in Fig. 3. The maximum of the second eigenvalue can
be found to be about 8.41 � 105 sÿ2 through further analysis. Thus it is impossible to have the second
eigenvalue greater than 8.42� 105 sÿ2.

3. Basic theory

De®nition. Assume that the cross-sectional areas of the bars of a truss before and after modi®cation are
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Ai and A 'i (i=1, 2, . . . , m ), respectively. If (A 'iÿAi )/Ai=a=const, the modi®cation on the truss is
referred to as uniform modi®cation.

3.1. Invariance of natural frequency

3.1.1. Statement: A uniform modi®cation on a truss does not change its natural frequencies
This statement can be easily proven as follows.
The eigenvalue equation of an N degrees of freedom truss before modi®cation can be written as

det
���K � ÿ li�M �

�� � 0 �8�
in which [K ] and [M ] are the sti�ness and mass matrices of the truss structure, respectively, and li is the
ith eigenvalue of the structure.

After a uniform modi®cation, the eigenvalue problem equation can be rewritten as

det
���K 0 � ÿ li�M 0 �

�� � 0 �9�
where

�K 0 � �
Xm
i�1
�1� a�Ai�K i � � �1� a��K � �10�

Fig. 2. First eigenvalue of the two-bar truss.
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in which [Ki ], [Mi ] are matrices related only to the ith bar with a unit area. Substituting Eqs. (10) and
(11) into Eq. (9), it can be found that Eq. (9) is identical to Eq. (8), which means that the eigenvalue-
problem of the truss after a uniform modi®cation is unchanged, and therefore the statement is proven.

The statement is used in the following sections to examine the key constraint that determines whether
there is a solution for a truss SDOP.

3.2. Key constraint for truss optimization problem

3.2.1. Statement: the natural frequency constraint is the key constraint to determine the solution existence
of a truss dynamic optimization problem

In 1976, Johnson studied the two-dimensional design space for the steady-state response of a
periodically loaded structure and revealed that the feasible design space was disconnected. He also
pointed out that the cause of the disjoint feasible domain was the resonance of natural frequencies with
the loading frequencies. The disjoint property implies that the external loading can a�ect the properties
of the feasible domain of the optimization problem due to resonance. To avoid the resonance e�ect and
simplify the discussion, we assume: if structural damping is ignored, the frequencies of loading are far
from the natural frequencies; if structural damping is considered, it is Rayleigh damping.

In a truss SDOP, constraints may be stresses, displacements, frequency responses, impulse responses,

Fig. 3. Second eigenvalue of the two-bar truss.
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random excitation responses, lower and upper bounds of design variables, natural frequencies or their
combinations. The key constraint, which determines the existence of a solution, is generally frequency
constraint. This can be justi®ed through a minimum weight truss SDOP, which has constraints of
stresses, lower bounds of design variables and natural frequencies. Truss SDOPs with other constraint
combinations can be veri®ed in a similar manner.

The existence of solution of a SDOP depends on the properties of its constraints' feasible domain.
When the constraints do not have a feasible domain, obviously, the optimization problem does not have
a solution; when the constraints' feasible domain is a continuous and closed region, the solution of the
SDOP exists. It is obvious that the lower bound constraints of design variables have a feasible domain,
and the domain is convex.

If the dynamic stress constraint in each bar can be satis®ed at a certain design point, then such point
must be a point within the stress constraints' feasible domain, thus, its feasible domain exists. Suppose
that some bars' dynamic stress constraints are not satis®ed at the current design point, or the point is
not within the feasible domain of stress constraints. Because the design variables can change
continuously and their upper bounds are not considered, there must exist a feasible design point, such as
the point obtained by a uniform modi®cation which satis®es each stress constraint.

When a truss is modi®ed uniformly at a certain ratio and the external forces are unchanged, the axial
force in any bar of the truss stays unchanged and stress in a bar of the truss varies inversely at the same
ratio. Therefore, if design variables can be modi®ed continuously and their upper bounds are not
considered, stress constraints must exist in a feasible domain, such as the domain {Ai: AirA 'i, where i=
1, 2, . . . , m, A 'i is the area at which all of the stress constraints are satis®ed, m is the number of design
variables}. This domain is a stress constraints' feasible domain for a statically determinate truss. For a
statically indeterminate truss with design variable linking, there must exist a set of design variable values
for given external loading. When the design variables are greater than these values, all of the stress
constraints can be satis®ed, thus, stress constraints have a feasible domain, although any variation of a
design variable may result in a reassignment of internal forces.

The feasible domain can become closed when a suitable upper bound is given to each design variable.
Thus, under the constraints of stress and design variable lower bounds, a feasible solution for the truss
minimum weight optimization problem must exist.

On the other hand, Eq. (8) can be rewritten as:

det

�����Xm
i�1

ui�K i � ÿ lj
Xm
i�1

ui�Mi �
����� � 0 j � 1, 2, . . . , n �12�

where [Ki ] and [Mi ] are the sti�ness and mass matrices with unit values for the design variables,
respectively, ui is the corresponding design variable, lj is the selected eigenvalue to be constrained, m is
the number of design variables, n is the number of natural frequencies to be constrained.

Eq. (12) is a set of n non-linear equations with m variables. If Eq. (12) has a solution, it must have
in®nite number of solutions because a uniform modi®cation on a truss does not change its natural
frequencies. In those solutions there must exist a solution, which can satisfy the design variable lower
bound and stress constraints simultaneously. Thus, when natural frequency constraints have a feasible
domain, the feasible domain of design variable lower bound and stress constraints must also exist.
Therefore, we conclude that the key constraint for a truss SDOP is the frequency constraint.

Based on the theory proven above, a method which only examines the natural frequency constraint
will be presented in the following section to determine the solution existence of truss SDOPs.
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4. Method and algorithm

Generally speaking, there are three types of natural frequency constraints:

l1rll
1 �13�

liRlu
i and li�1rli�1 �14�

lj � lj: �15�
Eq. (13) indicates that the fundamental frequency should not be less than a certain value, Eq. (14)
indicates restricted zone constraints for some natural frequencies and Eq. (15) indicates that several
natural frequencies are demanded to satisfy speci®c values.

The solution existence of a SDOP depends on whether or not the speci®c values, e.g. l l
1, li + 1, are

beyond their extreme values. If the speci®c value for a given constraint is within its extreme value, the
constraint is achievable in practical optimization, and if all the natural frequency constraints are
achievable, the SDOP holds a solution. Therefore, to determine the solution existence of a SDOP,
basically, what has to be done is to quickly optimize the corresponding eigenvalue. The objective
function of the optimization is the corresponding eigenvalue and the constraints are on design variables.
For constraints of l1rl l

1, li + 1rli+1 and lj=lj (if l 0
j < lj, l

0
j is the jth eigenvalue of the initially

designed structure), a maximization, and for constraints of li R l u
i and lj=lj (if l 0

j > lj), a
minimization for the corresponding eigenvalue are to be carried out.

The maximization can be done through the following procedure.
Maximize

li � li�uk� k � 1, 2, . . . , m �16�
Subjected to

ukr0 k � 1, 2, . . . , m: �17�
Using the steepest decent method (SDM), we start from the initial point u 0

k and iteratively move
towards the maximum point according to the rule

uk � u0k � avk k � 1, 2, . . . , m �18�

vk � @li=@uk �19�
where a is the iterative step size in the direction V=(v1, v2, . . . , vm ). And vk can be obtained by (Fox
and Kapoor, 1968)

vk �
ffi gT

�
@ �K �
@uk
ÿ li

@ �M �
@uk

�
ffi g

ffi gT�M �ffi g
�20�

in which {fi} is the ith eigenvector.
For the conventional SDM, the step size a is determined according to the optimal solution to the line-

search problem of minimizing li�uk � avk� subjected to ar0. As the objective is the eigenvalue, a modal
analysis must be used and the analysis is computationally expensive, Eq. (18) is therefore modi®ed as
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uk � u0k � bvk k � 1, 2, . . . , m �21�
in which

vk � vk=
������������������������������������
v21 � v22 � � � � � v2m

q
�22�

b � c0
b0

�23�

c0 � max

�
up

vp

�
for all vp < 0 p � 1, 2 . . . , m �24�

where b > 1 is a positive weight coe�cient determined in the iterative process, as shown in Fig. 4. Eq.
(22) is employed to normalize the moving direction, and Eqs. (23) and (24) are used to determine the
step size and to ensure the feasibility of modi®cation on the structure, respectively.

Using the above method, the sub-process of optimization for determining the step size b can be
omitted. If the speci®c value of the natural frequency constraint, l l

1, li+1, is far from its extreme value
and can be satis®ed, the convergence will be fast because the step size is large and the moving direction
is steepest. If the speci®c value is beyond its extreme value, the corresponding natural frequency can also
quickly approach the neighborhood of its extreme value. When the natural frequency has approached
the neighborhood of its extreme value, the step size determined by the above method may be too large
and thus the corresponding frequency may move toward the opposite direction. Fortunately, it is very
easy to determine whether there is an extreme value along a design variable. This is because when there
is an extreme value, either its sensitivity is very small or the sign of it changes within a small range.
Therefore, if the speci®c value of the natural frequency constraint is beyond or within the neighborhood
of its extreme value, we can determine the extreme value or a very small range of design variables which
contains the extreme value using the following equation:

uk � 1

2
�uik � ui�1k � for sign�vik� � ÿsign�vi�1k �: �25�

Where u i
k, u

i + 1
k and v ik, v

i + 1
k are the values of uk and vk at the ith and (i+1)th iterations, respectively.

To terminate the iterative process, all of the following optimality criteria are used:

lirli �26�
���� @li@uk

����Re1 k � 1, 2, . . . , m �27�

j uik ÿ ui�1k jRe2 and sign�vik� � ÿsign�vi�1k � k � 1, 2, . . . , m �28�
When inequality (26) is satis®ed, the corresponding natural frequency constraints can be satis®ed, and
when inequality (27) is satis®ed, the corresponding natural frequency approaches its maximum. When
Eq. (28) is satis®ed, a small domain of design variables which contain the maximum value of the
corresponding eigenvalue is obtained. In Eqs. (27) and (28), e1 and e2 are the error control parameters,
pre-determined by the accuracy desired. The ¯ow chart shown in Fig. 4 illustrates the proposed method.

For SDOPs of large structures, the sub-structure synthesis method and approximate reanalysis
techniques can be used to speed up the iteration process.
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Fig. 4. Flow chart for determining the solution existence.
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5. Numerical example

Examples for three truss structures are discussed in this section. The material properties for these
trusses are the same as those given in section 2.

5.1. Two-bar truss problem

Fig. 1 shows the con®guration of a two-bar planar truss. The initial sectional areas of bar 1 and 2 are
6.222 cm2 and 10.208 cm2, respectively. If the natural frequency constraint for the optimization is that
the ®rst eigenvalue is not less than 6.0 � 104 sÿ2, no iteration is needed to determine the existence of
solution because the ®rst eigenvalue at the initial point is already found to be greater than 6.0� 104 sÿ2.
Suppose we constrain the ®rst eigenvalue to be not less than 7.0 � 104 sÿ2, only nine iterations are
needed to reach the non-solution conclusion and to obtain a small range of design variables which
contain the maximum value of the ®rst eigenvalue, as shown in Fig. 5 and Table 1. It can also be seen
from Fig. 5 that the ®rst eigenvalue is between 6.0 � 104 sÿ2 and 7.0 � 104 sÿ2. It tallies well with the
theoretical value of 6.64� 104 sÿ2.

If the natural frequency constraint is given for the second eigenvalue not to be greater than 5.3 � 105

sÿ2, non-existence of solution output can be obtained at the 3rd iteration, and the minimum value of the
second eigenvalue is found to be greater than 5.35 � 105 sÿ2 which is the same as the theoretical value
given in section 2. The iterative history is shown in Fig. 6.

Fig. 5. Iteration history of the ®rst eigenvalue of the two-bar truss (l1r7.0� 104).
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5.2. Ten-bar truss problem

Fig. 7 shows the con®guration of a ten-bar planar truss. The initial sectional area of each bar is
10 cm2. Ten bars are divided into four design variable linking sets shown in Table 2. Suppose the
natural frequency constraint for the optimization is that the ®rst natural frequency is not less than
50.0 Hz, only three iterations determine the existence of solution, as shown in Fig. 8.

Table 2

Design variable linking of the ten-bar planar truss

Design variable no. 1 2 3 4

Bar no. 1,2 3,4 5,6 7,8,9,10

Table 1

Design variable range containing the maximum value of the ®rst natural frequency for the two-bar truss

A1 (cm
2) A2 (cm

2)

Lower bound 8.5117 8.8123

Upper bound 8.5662 8.7792

Fig. 6. Iteration history of the second eigenvalue of the two-bar truss (l2 R 5.3� 105).
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Fig. 7. A ten-bar planar truss.

Fig. 8. Iteration history of the ®rst frequency of the ten-bar truss ( f1r50.0 Hz).
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Fig. 9. Iteration history of the second frequency of the ten-bar truss ( f2r109.9 Hz).

Fig. 10. Iteration history of the second frequency of the ten-bar truss ( f2r115.0 Hz).
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Table 3

Design variable range containing the maximum value of the second natural frequency for the ten-bar truss

u1 (cm
2) u2 (cm

2) u3 (cm
2) u4 (cm

2)

Lower bound 9.9013 8.2312 5.8333 10.736

Upper bound 9.9065 8.2521 5.8659 10.777

Fig. 11. 72-bar space truss.
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If the natural frequency constraint is given for the second natural frequency not to be less than

109.9 Hz, the iteration process history of the second natural frequency is plotted in Fig. 9. Only three

Table 4

Design variable linking of the 72-bar space truss

Design variable number Bar number

1 1±4

2 5±12

3 13±16

4 17,18

5 19±22

6 23±30

7 31±34

8 35,36

9 37±40

10 41±48

11 49±52

12 53,54

13 55±58

14 59±66

15 67±70

16 71,72

Fig. 12. Iteration history of the ®rst frequency of the 72-bar truss ( f1 R 10.0 Hz).
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iterations are needed to determine the existence of solution. If the target value for the second natural
frequency is set at 115.0 Hz, only nine iterations determine the non-existence of solution, and a small
range of design variables which contain the maximum value of the second natural frequency, as shown
in Fig. 10 and Table 3.

5.3. 72-bar truss problem

Fig. 11 shows the con®guration of a 72-bar space truss. The 72 bars are divided into 16 design
variables as shown in Table 4. The initial design of the structure has cross sectional area of 10 cm2 for
each bar. If the natural frequency constraint for the optimization is that the ®rst natural frequency is
not greater than 10.0 Hz, three iterations determine the existence of solution, as shown in Fig. 12. If the
target value for the ®rst natural frequency is set to be no less than 50.0 Hz, three iterations can also
determine the existence of solution, as shown in Fig. 13.

To show the e�ciency of the proposed method, a practical SDOP of 72-bar truss is considered. The

Table 5

Initial and optimum characteristics of the 72-bar truss

f1 (Hz) A44 (M/N) A84 (M/N) Weight

Initial 33.92 7.05� 10ÿ7 8.45� 10ÿ9 1609.4 kg

Optimum 53.17 1.94� 10ÿ7 3.50� 10ÿ9 311.5 kg

Fig. 13. Iteration history of the ®rst frequency of the 72-bar truss ( f1r50.0 Hz).
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objective of the optimization is to minimize the weight of the structure. The initial parameters of the
structure are the same as section 5.3. Two load conditions are assumed. In the ®rst load case, three
static external loads of 2.223� 104 N are imposed on node 1 in the x, y and -z directions. In the second
load case, one harmonic external force with frequency 18.0 Hz is assumed to load at the 4th DOF. The
allowable tensile and compressive stresses are assumed to be 172.4 MPa. The lower bound of the design
variable is 6.452 cm2. The natural frequency constraint demands that the fundamental frequency of the
structure is no less than 50.0 Hz. The response constraints demand that the frequency response
amplitudes at 4th and 8th DOF are no greater than 2.0 � 10ÿ7 M/N. Using Silicon Graphics work-
station, it takes 12.3 s CPU time to obtain the optimum solution, the initial and optimum characteristics
of the structure are shown in Table 5. However, to determine the solution existence of the optimization
problem, only 0.3 s CPU time was needed. The CPU time used for checking process is only about 2.4%
of that for the actual optimization.

6. Conclusion and discussion

A basic theory has been presented and proven to determine the key constraint of frequency
optimization problems of truss structures. Based on this theory a practical method has been proposed.
The proposed method is e�cient, practically useful for determining the solution existence of truss
SDOPs. If a solution exists for a truss SDOP, the checking process is very fast and the data of modal
analysis and sensitivity analysis can be utilized in the following actual optimization. The CPU time used
for determining the solution existence is only a very small portion of the time needed for the actual
optimization. If there is no solution for a given SDOP, the cost for checking the solution existence is
easily justi®able, as this can save the loss in a blind actual optimization, which can be very costly in
most practical applications.

In an optimization process, a di�erent design point will sometimes cause the optimization process to
converge at di�erent local optima. However, the starting point for the solution existence searching
should not a�ect the outcome of the solution existence. The reason is that in the present searching
procedure, the checking is performed for each individual eigenvalue separately. The speci®ed ith
eigenvalue can have at most one minimum and one maximum value when the design variables vary
continuously (see, Figs. 2 and 3, as examples).

The existence of a solution for a SDOP depends on the properties of its constraints' feasible domain.
This paper revealed that the natural frequency constraint is the key constraint to determine the solution
existence of a truss SDOP. For more complicated structure rather than trusses, the solution existence of
a SDOP can be much more complicated. The natural frequency constraints may not be the key
constraint to determine the solution existence of the structure. The present primary research provides a
direction for further research on complex structures.

In the checking process, a modal analysis with each iteration is needed to determine the convergence.
Utilizing approximation methods is preferable in practical checking process to avoid performing a full
eigenvalue analysis with each iteration. The present method requires a separate checking for each
frequency constraint which may be costly for problems with large numbers of frequency constraints,
however, the time is still much smaller than an actual full optimization.

Acknowledgements

The partial support of Foundation Studies of State Commission and Aeronautical Science
Foundation of the Peoples Republic of China is gratefully acknowledged.

W.H. Tong et al. / International Journal of Solids and Structures 37 (2000) 4043±4060 4059



References

Berke, L., 1970. An e�cient approach to the minimum weight design of de¯ection limited structures, USAF AFFDL-TR-7-4-

FDTR, May.

Fox, R.L., Kapoor, M.P., 1968. Rates of change of eigenvalues and eigenvectors. AIAA Journal 6, 2426±2429.

Icerman, L.J., 1969. Optimal structural design for given dynamic de¯ection. International Journal of Solids and Structures 5, 473±

490.

Johnson, E.H., 1974. Disjoint design spaces in the optimization of harmonically excited structures. AIAA Journal 14, 259±261.

Khot, N.S., 1985. Optimization of structures with multiple frequency constraints. Journal of Computers & Structures 20, 869±876.

Khot, N.S., Venkayya, V.B., Berke, L., 1976. Optimization structural design with stability constraints. International Journal of

Numerical methods in Engineering 10, 1097±1114.

Khot, N.S., Venkayya, V.B., Berke, L., 1973. Optimization of structures for strength and stability requirements, Report No.

AFFDL-TR-73-98, Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, Ohio.

Razani, R., 1965. The behavior of the fully-stressed design of structures and its relationship to minimum weight design. AIAA

Journal 3, 2262±2268.

Sadek, E.A., 1996. Minimum weight design of structures under frequency and frequency response constraints. Computers &

Structures 60, 73±77.

Schmit, L.A. 1960. Structural design by systematic synthesis. In: Proceedings of the 2nd Conference on Electronic Computation,

American Society of Civil Engineering, New York, pp. 105±122.

Shanley, F.R., 1952. Weight-Strength Analysis of Aircraft Structures. McGraw Hill, New York.

Turner, M.J., 1967. Design of minimum mass structures with speci®ed natural frequencies. AIAA Journal 5, 406±412.

Venkayya, V.B., Khot, N.S., Berke, L. 1973. Application of optimality criteria approaches to automated design of large practical

structures, AGARD-CPP-123. In: Second Symposium on Structural Optimization, Milan, Italy, April.

Wang, B.P., 1991. Closed form solution for minimum weight design with a frequency constraint. AIAA Journal 29, 152±154.

Zarghamee, M.S., 1968. Frequency optimization. AIAA Journal 6, 749±750.

W.H. Tong et al. / International Journal of Solids and Structures 37 (2000) 4043±40604060


